q-deformed Lie algebras and fractional calculus

R. Herrmann
Fractional calculus and q-deformed Lie algebras are closely related. Both concepts expand the scope of standard Lie algebras to describe generalized symmetries. For the fractional harmonic oscillator, the corresponding q-number is derived. It is shown, that the resulting energy spectrum is an appropriate tool e.g. to describe the ground state spectra of even-even nuclei. In addition, the equivalence of rotational and vibrational spectra for fractional q-deformed Lie algebras is shown and the $B_\alpha(E2)$ values for the fractional q-deformed symmetric rotor are calculated.
download: arxiv: 0711.3701v1 [physics.gen-ph]
reference: Physica A 389 (2010) 4613