The fractional Schroedinger equation and the infinite potential well – numerical results using the Riesz derivative

R. Herrmann

Based on the Riesz definition of the fractional derivative  the fractional Schroedinger equation with an infinite well potential is investigated. First it is shown analytically, that the solutions of the free fractional Schroedinger equation are not eigenfunctions, but good approximations for large k and for $\alpha \approx 2$. The first lowest eigenfunctions are then calculated numerically and an approximate analytic  formula for the level spectrum is derived.

download: arxiv: arXiv:1210.4410[math-ph]
reference: Gam. Ori. Chron. Phys. (2013) 1(1) 1-12